skip to main content


Search for: All records

Creators/Authors contains: "Luchters, Stanley"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Climate change is likely to have wide-ranging impacts on maternal and neonatal health in Africa. Populations in low-resource settings already experience adverse impacts from weather extremes, a high burden of disease from environmental exposures, and limited access to high-quality clinical care. Climate change is already increasing local temperatures. Neonates are at high risk of heat stress and dehydration due to their unique metabolism, physiology, growth, and developmental characteristics. Infants in low-income settings may have little protection against extreme heat due to housing design and limited access to affordable space cooling. Climate change may increase risks to neonatal health from weather disasters, decreasing food security, and facilitating infectious disease transmission. Effective interventions to reduce risks from the heat include health education on heat risks for mothers, caregivers, and clinicians; nature-based solutions to reduce urban heat islands; space cooling in health facilities; and equitable improvements in housing quality and food systems. Reductions in greenhouse gas emissions are essential to reduce the long-term impacts of climate change that will further undermine global health strategies to reduce neonatal mortality. 
    more » « less
  2. Abstract Children (<5 years) are highly vulnerable during hot weather due to their reduced ability to thermoregulate. There has been limited quantification of the burden of climate change on health in sub-Saharan Africa, in part due to a lack of evidence on the impacts of weather extremes on mortality and morbidity. Using a linear threshold model of the relationship between daily temperature and child mortality, we estimated the impact of climate change on annual heat-related child deaths for the current (1995–2020) and future time periods (2020–2050). By 2009, heat-related child mortality was double what it would have been without climate change; this outweighed reductions in heat mortality from improvements associated with development. We estimated future burdens of child mortality for three emission scenarios (SSP119, SSP245 and SSP585), and a single scenario of population growth. Under the high emission scenario (SSP585), including changes to population and mortality rates, heat-related child mortality is projected to double by 2049 compared to 2005–2014. If 2050 temperature increases were kept within the Paris target of 1.5 °C (SSP119 scenario), approximately 4000–6000 child deaths per year could be avoided in Africa. The estimates of future heat-related mortality include the assumption of the significant population growth projected for Africa, and declines in child mortality consistent with Global Burden of Disease estimates of health improvement. Our findings support the need for urgent mitigation and adaptation measures that are focussed on the health of children. 
    more » « less
  3. Abstract Many populations experience high seasonal temperatures. Pregnant women are considered vulnerable to extreme heat because ambient heat exposure has been linked to pregnancy complications including preterm birth and low birthweight. The physiological mechanisms that underpin these associations are poorly understood. We reviewed the existing research evidence to clarify the mechanisms that lead to adverse pregnancy outcomes in order to inform public health actions. A multi-disciplinary expert group met to review the existing evidence base and formulate a consensus regarding the physiological mechanisms that mediate the effect of high ambient temperature on pregnancy. A literature search was conducted in advance of the meeting to identify existing hypotheses and develop a series of questions and themes for discussion. Numerous hypotheses have been generated based on animal models and limited observational studies. There is growing evidence that pregnant women are able to appropriately thermoregulate; however, when exposed to extreme heat, there are a number of processes that may occur which could harm the mother or fetus including a reduction in placental blood flow, dehydration, and an inflammatory response that may trigger preterm birth. There is a lack of substantial evidence regarding the processes that cause heat exposure to harm pregnant women. Research is urgently needed to identify what causes the adverse outcomes in pregnancy related to high ambient temperatures so that the impact of climate change on pregnant women can be mitigated. 
    more » « less